
Preserving Coincidence and Incidence Topologies
in Saalfeld’s Polyline Simplification Algorithm

Adler C. G. da Silva, Shin-Ting Wu

Departament of Computer Engineering and Industrial Automation (DCA)
School of Electrical and Computer Engineering (FEEC)

State University of Campinas (UNICAMP)
P.O. Box 6101, 13083-970 – Campinas, SP, Brazil

{acardoso,ting}@dca.fee.unicamp.br

Abstract. In this paper, we firstly describe two topological configurations that
are not considered by Saalfeld’s polyline simplification algorithm: the coinci-
dence topology, concerning the overlapping of two polylines or the overlapping
of a feature point and a polyline, and the incidence topology, concerning the
incidence of two polylines without having the incidence point represented as a
common vertex. Afterwards, we suggest a simple modification in Saalfeld’s al-
gorithm for preserving these topologies. Finally, we give some results of our
simplification procedure and compare them to the ones of Saalfeld’s algorithm.

1. Introduction

In Geographic Information Systems, polyline simplification is widely used to reduce dig-
ital map data information for the purpose of speeding up visualization. The simplification
of a polyline is a technique which replaces the original linear feature by a less complex
representation [Saalfeld 1999]. A variety of techniques has been presented by researchers
in different contexts [Tobler 1964, Lang 1969, Reumann and Witkam 1974, Jenks 1981].
In cartography, the classic Ramer-Douglas-Peucker (RDP) algorithm [Ramer 1972,
Douglas and Peucker 1973] is recognized as the one that delivers the best perceptual rep-
resentations of the original line.

One important characteristic of a technique of simplification is to consider the
features in the vicinity of the polyline. Since the simplified polyline may lie far apart
from the original one, a city can appear inside a lake or changes its side with respect to a
river or a political boundary. Such geometric peculiarities are related to the topology of a
map. The RDP algorithm does not consider these properties and, hence, cannot preserve
the original topology of most maps. Techniques like the RDP algorithm, which take the
polyline in vacuoor in isolation [Saalfeld 1999], require some additional adjustments in a
post-processing stage. Since these corrections do not make use of the original data, some
conflicts cannot be removed.

Some algorithms modify a polylinein suiteor in context, taking the relationships
of the polyline with other nearby features into consideration during the adjustment pro-
cess [de Berg and Kreveld 1995, Saalfeld 1999]. In these techniques, there is no need of
post-processing stage, since the topology is preserved in the course of the simplification
procedure. In [Saalfeld 1999], Saalfeld introduced a modification of the RDP algorithm,
in order to ensure the topological equivalence between the original and simplified poly-
lines. He assumes that the input maps have been partitioned into disjunct open subsets,



which are not the case of most of digital maps in the known repository [DCW 1992]. Such
situation appears frequently in maps in which rivers are part of the political boundaries,
as illustrated in Figure 1. Notice that most part of the political borderlines of the State
of Alagoas overlaps river lines and some river lines cross the state frontier, without the
consistent insertion of a common vertex.

Figure 1. Map of the drainage network of the State of Alagoas.

It is common to encounter polylines that are described by non-disjunct sets:

• Two polylines, represented by two distinct sequences, with some coincident ver-
tices, as depicted in Figure 2(a). We may re-partition this point set into five dis-
junct open polylines (P1,P2,P3,P4, andP5) and two points (p1 andp2), as shows
Figure 2(b), to beside the redundancies.
• Two polylines, represented by two distinct sequences, with an incident point,

which is not represented as a common vertex, as depicted in Figure 2(c). In
this case, one alternative to remove the geometrical redundancies is to re-partition
them into three disjunct open polylines (P1, P2, andP3) and one point (p), as
illustrates Figure 2(d).

For the purpose of distinguishing between these two types of geometrical redun-
dancies, we introduce two concepts: (1) the coincidence topology, when either two poly-
linesP1 andP2 coincides in one or more vertices, or a vertex of a polyline coincide with
a feature point, and (2) the incidence topology, when an extreme vertex of a polylineP2

falls on a polylineP1, without the insertion of a common vertex inP1.

In this paper, we suggest a simple modification in Saalfeld’s algorithm for pre-
serving the coincidence and incidence topologies to handle the input data that contain
geometrical redundancies. As our goal is for efficient visualization, we show that the
identification of the so-called essential vertices suffices. We firstly present, in Section 2.,
in a very intuitive way, the concept of topological properties of a map represented by poly-
lines and points. Then, in Section 3., we give a brief description of Saalfeld’s polyline
simplification algorithm. Next, in Section 4., we introduce our proposal for maintaining
the original coincidence and incidence topologies. Afterwards, in Section 5., we compare



P1

P2

(a)

P1

P2

P3

P4

P5p1

p2

(b)

P1

P2

(c)

P1

P2

P3

p

(d)

Figure 2. Geometrical redundancies and their respective correct topological rep-
resentations: (a) the partially coincident polylines P1 and P2, and (b) their par-
titioning into the disjunct subsets P1, P2, P3, P4, P5, p1, and p2; (c) the incident
polylines P1 andP2, and (c) their partitioning into the disjunct subsets P1, P2, P3,
and p.

some simplified results of the modified version of Saalfeld’s algorithm to the outcomes
from the original Saalfeld’s algorithm. Finally, in Section 6., we present some concluding
remarks.

2. Topology in Maps

Topology deals with geometric properties where distance is not relevant. Among the
topological characteristics we may mention the connectivity, the inclusion and the adja-
cency of points in a geometric figure. In the context of cartography, for instance, a map
simplification which diminishes the sinuosity of a river or increases the size of a lake
only alters the map geometry. On the other hand, a map simplification that produces self-
intersections in a river or increases the size of a lake, such that it comprises a city that
originally lies outside, does modify the map topology.

A topological property can be either intrinsic or relative. The intrinsic topology is
related to the properties of the polyline itself, such as the self-intersection. Therefore, if
a polyline has no self-intersection, it should keep its non-self-intersecting state after the
simplifying process. Wu and Márques introduced a modified RDP algorithm, based on
the concept of star-shaped polyline which generates non-self-intersecting simplified poly-
lines [Wu and Márquez 2003]. This work was later improved to present some additional
star-shaped polyline properties in [Wu et al. 2004].

The relative topology focuses on the topological relationship between two dis-
tinguishing map features. A map simplification alters the relative topology of features,
when, for example, it originates intersections between two originally separating rivers or
changes the side of a city with respect to a river. Saalfeld’s algorithm only preserves the



sidedness of a polyline with respect to its neighbouring features. There are, however,
much more relative arrangements for a map consisting of polylines and points.

For two points, there are two possible arrangements: they either overlap or not.
Between a point and a polyline, we may distinguish the following arrangements: the
point lies either exactly over the polyline or in one of its sides. Among the variety of
arrangements between two polylinesP1 andP2, we may reduce them into four basic
configurations: (1)P1 andP2 touch only on their extreme vertices (Figure 3(a)), as in
a political borderline; (2) an extreme vertex ofP2 touches an intermediate vertexP1

(Figure 3(b)), as in a river ramification; (3)P1 andP2 overlap on some intermediate
vertices (Figure 3(c)), as in the superposition of a river and a political borderline; (4)
P1 andP2 cross in some intermediate points that are not vertices (Figure 3(d)), as in a
river road bridge; and (5) an extreme vertex ofP2 falls onP2, without the insertion of a
common vertex (Figure 3(e)).

P1 P2

(a)

P1 P2

(b)

P1 P2

(c)

P1 P2

(d)

P1 P2

(e)

Figure 3. Basic arrangements between the polylines P1 and P2.

3. Saalfeld’s Polyline Simplification Algorithm
Saalfeld’s technique comprises two steps. The first step runs the classic RDP algorithm
over the original polylines under the desired toleranceε. The second step adjusts the
topology of the simplified polyline, by adding more vertices until all sidedness incorrec-
tions are removed. Saalfeld proved the convergency of this method, by showing that, in
the worst case, it will add all vertices and remount the original consistent polyline.

LetP be a polyline andP ′ the result of its simplification. LetPij be the subpoly-
line of P from the vertexvi to the vertexvj . Let eij be the result of the simplification of
Pij in P ′, as shown in Figure 4. Saalfeld proved that the features that lie between the line
segmenteij and the subpolylinePij (i.e., inside the complex polygon made by the edges
of Pij andeij) always lie in the “wrong” side with respect toP ′, as depicted in Figure 4.

To determine if a featuref lies inside the polygon bounded by the edges ofPij

andeij , Saalfeld made use of a simple algorithm based on the Jordan Curve Theorem.
It calculates the number of crossings between a ray originating fromf and the complex
polygon made byPij and eij . The featuref is outside the polygon or in the “right”
polyline side, when this number is even. Otherwise, it is inside the polygon or in the
“wrong” polyline side. Saalfeld considered that a simplified polyline was topologically
consistent to its original polyline, when every featuref was in the “right” polyline side.

The topology correction for the interval between verticesvi andvj is done recur-
sively, by adding to the line segmenteij the other vertices of subpolylinePij, until all



vi vj

Pij

eij

Figure 4. Analysis of the topological behavior of features that lies inside the
polyline’s convex hull.

features lie in the “right” poyline side. However, during this procedure, some features
that are in the “right” polyline side in a step, can lose their correct sidedness in the next
step. Saalfeld showed that only the features inside the convex hull ofPij may change
their sidedness, as depicted in Figure 4.

This procedure can be summarized, for each line segmenteij of the simplified
polylineP ′, in the following steps:

1. verify, among the features in the convex hull of the subpolylinePij , if there is any
between the line segmenteij andPij ;

2. verify, among the vertices fromvi+1 to vj−1 of the subpolylinePij , if there is any
farther from the line segmenteij than the toleranceε;

3. if step 1 or step 2 succeed, then add the farthest vertexvk from the line segmenteij ,
generating the line segmentseik andekj; otherwise, stop;

4. calculate the convex hulls of the subpolylinesPik andPkj ;
5. go back to step 1 for the subpolylinesPik andPkj.

For each subpolylinePij , Saalfeld’s algorithm maintains a list of all features inside
its convex hull, as well as their sidedness state, i.e., “right” or “wrong” side. When the
algorithm adds a vertexvk, it verifies which features lie inside each one of the convex
hulls ofPik andPkj, and update their sidedness state. This update is accomplished in a
very efficient way, as we can observe in Figure 5. Only the features (denoted by small
squares) that lie inside the triangle4vivjvk change their sidedness state. Besides, some
features (indicated by small triangles) that appear outside both convex hulls are discarded.

vi vj

vk

Pik Pkj

eij

eik ekj

Figure 5. Update of the sidedness state of the features inside the convex hull of
the subpolyline Pij after adding the vertex vk.



To compute the convex hull of the subpolylines, Saalfeld employed a enhanced
version of Melkman’s classic algorithm [Melkman 1987]. This enhanced version effi-
ciently calculates the convex hulls of the two subsequent partitionsPik andPkj of a sub-
polylinePij based on its convex hull [Hershberger and Snoeyink 1992].

Once a vertexvk is added to a simplifying line segment, it can interfere with other
convex hulls and may lead to topological inconsistencies. Saalfeld’s algorithm also takes
into account the vertices added during the correction, by storing a list with the new added
vertices and verifying if they lie inside of other convex hulls.

The polyline neighbouring features considered by Saalfeld’s algorithm can be ei-
ther external features, like cities and vertices of other polylines, or vertices of the polyline
itself. Thus, Saalfeld unified the treatment for the intrinsic and the relative topologies.
Nevertheless, since Saalfeld assumes that every feature is far from the polyline by a dis-
tanceδ > 0, his algorithm does not consider the coincidence and incidence topologies.

The map of Figure 6 is the outcome from Saalfeld’s simplification of the map of
Figure 1. Notice that many instances of coincidence topology inside the circumferences
as well as of incidence topology inside rectangles were lost.

Figure 6. Outcome from Saalfeld’s simplification of the map of Figure 1.

4. Preserving the Coincidence and Incidence Topologies

In order to preserve the coincidence topology, we propose to include a new criterion. Let
P1 andP2 be two polylines with a set of coincident vertices, whose simplified polylines
are respectivelyP ′1 andP ′2. We ensure that if a coincident vertex appears inP1, then it
will appear inP2, and vice-versa. We consider that two vertices of two distinguishing
polylines are coincident if their computer discrete representations are exactly equal, so
that a simple equality test suffices to perform their comparison. Note that we can also
apply this criterion to a polyline and a isolated feature point, such as a city.

Figure 7(a) illustrates three distinct polylinesP1, P2, andP3, with some geomet-
rically coincident vertices. Their simplification under a high toleranceε results, respec-



tively, in the polylinesP ′1, P ′2, andP ′3, as depicted in Figure 7(b). As we can see, the
circled vertex was just added to respect the coincidence criterion, since it was already
coincident in the original lines. Nevertheless, the coincidence topology was lost, because
some important coincident vertices were not preserved in any of the simplified polylines.
Thus, the coincidence criterion by itself does not suffice to maintain the coincidence topol-
ogy.

P1

P2

P3

(a)

P ′1

P ′2
P ′3

(b)

Figure 7. (a) Partially coincident polylines P1, P2, and P3; and (b) their topologi-
cally inconsistent outcomes from our simplification P ′

1, P ′
2, and P ′

3.

To remedy this problem, we introduce the concept of essential vertices. The es-
sential vertices are the vertices which must appear in any simplified polyline, in order to
ensure that the coincidence criterion suffices to preserve the coincidence topology. Es-
sential vertices are coincident intermediate vertices, whose adjacent vertices are not both
coincident, as illustrates Figure 8(a). Strictly speaking, letvi andvj be two coincident
intermediate vertices of the polylinesP1 andP2 respectively. The verticesvi andvj are
said to be essential if, and only if,

• vi+1 6= vj+1 or vi−1 6= vj−1; and
• vi+1 6= vj−1 or vi−1 6= vj+1.

Therefore, before starting the corrections, we must identify and insert all essential
vertices in the simplified polylines. For identifying the essential vertices, we have to
make a pairwise search among the subpolylinesPij of the original polylines. Figure 8(a)
illustrates the result of this search for the polylinesP1, P2, andP3. Their simplification
results are depicted in Figure 8(b). Once more, the circled vertex was just added to respect
the coincidence criterion, since it was not classified as an essential vertex.

With regard to the conservation of incidence topology, we adopt a toleranceτ > 0
to relax the incidence tests, named nearness tolerance. Although this approach does not
succeed in all cases, a number of its subtle implications does not seem to visually affect
the topological consistency of the map. We say that the polylinesP1 andP2 are incident
if an extreme vertexv of the polylineP2 lies at a distanced < τ from the polylineP1.
The magnitude ofτ must be related to the discrete approximation of the data. We say that
the incidence topology is preserved ifv andP1 still fulfill the nearness criterion after the
procedure of simplification.

We devise a way to uniformly deal with the concepts of coincidence and incidence
from the algorithmic point-of-view, by distinguishing three arrangements of a featuref
with respect to a polylineP:



P1

P2

P3

(a)

P ′1
P ′2

P ′3
(b)

Figure 8. (a) Polylines P1, P2, and P3 with their essential vertices; and (b) their
topologically consistent outcomes from the modified version of Saalfeld’s sim-
plification P ′

1, P ′
2, and P ′

3.

• “overlapping”, whenf is exactly equal to a vertex ofP;
• “near”, whenf lies at a distanced < τ fromP;
• “far”, when f lies at a distanced ≥ τ fromP.

Basically, our proposal is to ensure that, for each neighbouring featuref , its ar-
rangement with respect to the simplified subpolylineP ′ij is the same as with respect to
the original subpolylinePij . Moreover, those features, which are “far” from the polyline,
should lie in the “right” side ofP ′ij , as required by Saalfeld’s criterion. Algorithm 1 gives
an outline of our proposal.

Function checkConsistency(originalArrang , currentArrang : Arrangement;
side : Side): Boolean

01 Begin
02 If originalArrang 6= currentArrang then
03 return FALSE;
04 End if
05 If currentArrang = FAR.and. side = WRONGthen
06 return FALSE;
07 End if
08 return TRUE;
09 End

Algorithm 1. Verification of topologically consistency of a neighbouring feature
with respect to a polyline.

The original arrangement of a featuref with regard to the subpolylinePij can
be computed with Algorithm 2. First of all, it verifies whetherf “overlaps” any vertex
of Pij (line 04 to 08). Next, it checks whetherf lies “near” to any of the straight line
segments ofPij (line 09 to 13), on the basis of the computation of the distance with the
functiondistance (line 10). Otherwise, the algorithm assumes thatf lies “far” from Pij

(line 14).

Our classification begins with respect to the roughest simplified polyline ofPij ,
which is the line segmenteij (orP[i]P[j]). The initial arrangement of a nearby featuref
with respect toeij can be computed with Algorithm 3. This algorithm just verifies whether



Function originalArrangement(P : Point[]; i, j: Integer; f : Point; τ : Real): Arrangement
01 Var
02 k: Integer;
03 Begin
04 For k ← i to j do
05 If f = P [k] then
06 return OVERLAPPING;
07 End if
08 End for
09 For k ← i to j − 1 do
10 If distance(f , P [k]P [k + 1]) < τ then
11 return NEAR;
12 End if
13 End for
14 return FAR;
15 End

Algorithm 2. Computation of the original arrangement between the feature f and
the subpolyline Pij under the nearness tolerance τ .

f “overlaps”vi or vj (line 02), or lies “near” toeij (line 05). Otherwise, it assumes that
f lies “far” from eij (line 08).

Function initialArrangement(P : Point[]; i, j: Integer; f : Point; τ : Real): Arrangement
01 Begin
02 If f = P [i] .or. f = P [j] then
03 return OVERLAPPING;
04 End if
05 If distance(f , P [i]P [j]) < τ then
06 return NEAR;
07 End if
08 return FAR;
09 End

Algorithm 3. Computation of the initial arrangement between the feature f and
the subpolyline Pij under the nearness tolerance τ .

It remains to present a way to compute the arrangement of a featuref with respect
to a simplified polylineP ′ij that is required by Algorithm 1. It is worth observing that
this arrangement varies at each iteration, since new vertices are added toP ′ij. When a
vertexvk is added toP ′ij , the arrangement off must be updated accordingly. Besides
the case of Figure 5, two new cases may occur: (1) the feature may lie exactly over the
vertexvk (Figure 9(a)), and (2) the feature may lie near to the line segmentseik andekj

(Figure 9(b)).

If the featuref already “overlaps”vi or vj , this overlapping arrangement is pre-
served. Otherwise, after the insertion of the vertexvk (or P[k]), the current arrangement
of f must be updated with respect to the simplified polylineP ′ij , as illustrated in Algo-
rithm 4. It firstly tests whetherf “overlaps”vk (line 02). If it does not, it tests whether
f is “near” toP[i]P[k] or P[k]P[j] (line 05). Otherwise, it assumes thatf is “far” from
P ′ij (line 08).



vi vj

vk

P1

P2

(a)

vi vj

vk

P1

P2

eij

eik ekj

(b)

Figure 9. Update of the arrangement of the features after the insertion of a ver-
tex vk in (a) the coincidence case, and (b) the incidence case.

Function currentArragement(P : Point[]; i, j, k: Integer; f : Point; τ : Real): Arrangement
01 Begin
02 If f = P [k] then
03 return OVERLAPPING;
04 End if
05 If distance(f , P [i]P [k]) < τ .or. distance(f , P [k]P [j]) < τ then
06 return NEAR;
07 End if
08 return FAR;
09 End

Algorithm 4. Update of the current arrangement between the feature f and the
subpolyline Pij under the nearness tolerance τ when the vertex P [k] is added.

Saalfeld’s simplification algorithm may be further enhanced by integrating the
Algorithms 1, 2, 3, and 4, according to the following scheme:

1. determine, for each feature lying inside and in theτ -vicinity of the convex hull of
Pij , its original and initial arrangement with use of Algorithms 2 and 3, respec-
tively;

2. update, at each iteration and for each feature lying inside and in theτ -vicinity of
the convex hull ofPij , its current arrangement with respect to the current simpli-
fied subpolylineP ′ij with use of Algorithm 4;

3. check, at each iteration, whether the original topology ofPij is consistent with the
topology of its current simplified polylineP ′ij with help of Algorithm 1. If they
are not consistent, go to step 2; otherwise, stop.

5. Results

For each map in this section, we compare the outcomes from the original and the modified
versions of Saalfeld’s simplification under a high toleranceε and an appropriated nearness
toleranceτ , in order to point out the enhancements achieved by our proposal.

The map of Figure 10 is the outcome from the modified version of Saalfeld’s sim-
plification of the map of Figure 1, which is result of overlapping of three layers: the
ocean/political boundaries, the drainage network, and the populated places. Notice that



the coincidence topology between the political borderlines and some river lines, as de-
picted in Figure 6, was correctly preserved, as well as the incidence topology between
river lines extreme vertices and the political contour.

Figure 10. Result of the modified version of Saalfeld’s simplification of the map
of Figure 1.

Figure 11 illustrates the map consisting of three layers: the ocean/political bound-
aries, the road network, and the populated places of the State of Rio de Janeiro. The region
in light gray represents the urban area of Rio de Janeiro City, part of whose boundary is
the Bay of Guanabara’s shorelines.

Figure 11. Map of the road network of the State of Rio de Janeiro.

The map of Figure 12 is the outcome from Saalfeld’s simplification of the map of
Figure 11. The coincidence topology was missed in the region pointed out by a circum-



ference, which comprises the contour of Rio de Janeiro City and the Bay of Guanabara.
Moreover, some road lines lost their incidence relationship with the political borderlines.
They are pointed out by rectangles.

Figure 12. Result of Saalfeld’s simplification of the map of Figure 11.

The map of Figure 13 is the outcome from the modified version of Saalfeld’s sim-
plification of the map of Figure 11. All the coincidence and incidence topology instances
indicated in Figure 12 were preserved after the simplification.

Figure 13. Result of the modified version of Saalfeld’s simplification of the map
of Figure 11.

Figure 14 presents a map of the State of Santa Catarina comprising three layers of
geodata: the ocean/political boundaries, the drainage network, and the populated places.



As in the map of the State of Alagoas, it has lots of coincidence topology instances be-
tween river lines and the political borderlines.

Figure 14. Map of the drainage network of the State of Santa Catarina.

The map of Figure 15 is the outcome from Saalfeld’s simplification of the map
of Figure 14. Once more the original coincidence and incidence topologies were not
preserved in regions pinpointed, respectively, by circumferences and rectangles.

Figure 15. Result of Saalfeld’s simplification of the map of Figure 14.

The map of Figure 16 is the modified version of Saalfeld’s simplification of the
map of Figure 14. Our proposal again succeeds in preserving the coincidence and inci-
dence topologies missed by Saalfeld’s algorithm.



Figure 16. Result of the modified version of Saalfeld’s simplification of the map
of Figure 14.

Finally, we present outcomes from the simplification of the ocean/political bound-
aries of the States of the southeast region of Brazil, shown in Figure 17(a). In this case, we
have redundancies as each state is represented by a polygon. Therefore, Saalfeld’s sim-
plification delivers several undesirable slivers and gaps, as shown in Figure 17(b), while
its modified version can correctly handle the redundancies, as illustrated in Figure 17(c).

(a) (b) (c)

Figure 17. (a) The ocean/political boundaries of the southeast region of Brazil,
and its representations resulting from (b) the original and (c) the modified ver-
sions of Saalfeld’s simplification.

6. Concluding Remarks

In this paper, we showed that the map topology must be studied either in a intrinsic or
relative context, and, in the latter, a diversity of topological arrangements of features
must be considered. We also showed that Saalfeld’s polyline simplification algorithm
does not preserve the coincidence and incidence (without a common vertex) arrangements
and introduced two concepts for distinguishing them: the coincidence and the incidence
topologies.



In order to preserve the coincidence and incidence topologies in the data with ge-
ometrical redundancies, we proposed slight modifications of Saalfeld’s algorithm: (1) we
introduce a pre-processing phase for determining the essential vertices, and, (2) besides
the sidedness criterion, we include the proximity criterion during the simplification proce-
dure. The essential vertices fix the extreme vertices of the coincident subpolylines. This
facilitates the handling of the coincidence topology. On the other hand, the proximity
criterion, on its turn, allows us to deal with the incidence topology on the fly.

We applied our algorithm on maps of distinguishing data formats, all of them
contain geometrical redundancies, and the visual quality of the results we obtained is
satisfactory.

References

DCW (1992). Digital Chart of the World Server. Internet sitehttp://www.maproom.
psu.edu/dcw/ .

de Berg and Kreveld (1995). A new approach to subdivision simplification. InAutoCarto,
volume 12, pages 79–88.

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the number of
points required for represent a digitzed line or its caricature.Canadian Cartographer,
10(2):112–122.

Hershberger, J. and Snoeyink, J. (1992). Speeding up the Douglas-Peucker line simpli-
fication algorithm. InThe 5th International Symposium on Spatial Data Handling,
pages 134–143.

Jenks, G. F. (1981). Lines, computers and human frailties. InAnnals of the Association
of American Geographers, pages 1–10.

Lang, T. (1969). Rules for robot draughtsmen.Geographical Magazine, 22:50–51.

Melkman, A. A. (1987). On-line construction of the convex hull of a simple polyline.
Information Processing Letters, 25:11–12.

Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane
curves.Computer Graphics and Image Processing, 1:224–256.

Reumann, K. and Witkam, A. P. M. (1974). Optimizing curve segmentation in computer
graphics. InProceedings of the International Computing Symposium, pages 467–472.

Saalfeld, A. (1999). Topologically consistent line simplification with the Douglas-
Peucker algorithm.Cartography and Geographic Information Science, 26(1):7–18.

Tobler, W. R. (1964). An experiment in the computer generalization of map. Technical
report, Office of Naval Research, Geography Branch.

Wu, S.-T., da Silva, A. C. G., and Márquez, M. R. G. (2004). The Douglas-Peucker al-
gorithm: sufficient conditions for non-self-intersecting.Journal of the Brazilian Com-
puter Society, 1(1):1–1.

Wu, S.-T. and Márquez, M. R. G. (2003). A non-self-intersection Douglas-Peucker algo-
rithm. InThe 16th Brazilian Symposium on Computer Graphics and Image Processing
(SIBGRAPI), pages 60–66. IEEE Press.


